Gestational Diabetes risk for South Asians

Preliminary descriptive data analysis for the Diabetes and Pregnancy clinic
* No disclosures

* Presentation sponsored by Eli Lilly

* Acknowledge Denis Tsang (Dietetic Intern, MAN program, U of G) for statistical analysis of data
According to the 2006 census, Canada’s visible minority population is growing at a rate of 27%
* 1 in 3 Canadians will belong to a visible minority by 2031

* In 2006, South Asians surpassed Chinese to become Canada’s largest visible minority group

* South Asians have high rates of diabetes and one of the highest rates of premature cardiovascular disease (CVD) in the world

* India, together with China and the Middle East, are now considered the “hot spots” of diabetes, with a projected doubling in incidence of the disease over the next 20 years
Interrelationship between maternal age, BMI and racial origin

(Makgoba et al., 2011, BJOG)

* Retrospective Study
* 15 maternity units between 1988 and 2000
* Data compared to White European Women age 20-24
Odds Ratios for development of GDM

<table>
<thead>
<tr>
<th></th>
<th>White European</th>
<th>Black African</th>
<th>Black Caribbean</th>
<th>South Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 25-29</td>
<td>1.16</td>
<td>3.40</td>
<td>3.25</td>
<td>3.85</td>
</tr>
<tr>
<td>Age 30-34</td>
<td>2.04</td>
<td>6.28</td>
<td>5.23</td>
<td>8.77</td>
</tr>
<tr>
<td>Age 35-39</td>
<td>2.97</td>
<td>13.67</td>
<td>1.96</td>
<td>14.05</td>
</tr>
<tr>
<td>Age> 40</td>
<td>4.08</td>
<td>59.2</td>
<td>6.87</td>
<td>27.43</td>
</tr>
<tr>
<td>BMI 18.5-24.9</td>
<td>1.00</td>
<td>2.62</td>
<td>1.21</td>
<td>3.00</td>
</tr>
<tr>
<td>BMI 25.0-29.9</td>
<td>1.77</td>
<td>3.48</td>
<td>3.35</td>
<td>7.70</td>
</tr>
<tr>
<td>BMI > 30</td>
<td>4.70</td>
<td>12.83</td>
<td>5.85</td>
<td>17.39</td>
</tr>
</tbody>
</table>
Age

* Higher risk for developing GDM in:
 * White European women age > 30
 * Black Africans or Black Carribeans age > 25
 * South Asians age > 20
 * Rate of GDM rose more rapidly with age
BMI

* White Europeans and Caribbean groups
 * Significantly higher risk in overweight (BMI > 25) and obese (BMI > 30)

* Black Africans and South Asians
 * Significantly higher risk in all BMI groups
South Asians develop abnormal glucose, lipids and blood pressure at significantly lower BMIs (21) compared to caucasians (30)

Increased tendency to develop visceral abdominal fat and fatty infiltration of the liver

Reasons for increased metabolic sensitivity to weight gain is unknown
*South Asia

India, Pakistan, Bangladesh, Sri Lanka, Nepal, Bhutan, Maldives
Low birth weight
 * Thin-fat phenotype
 * South Asian babies may be smaller but have similar subscapular skin-fold thickness

Under nutrition
 * Intrauterine under nutrition and increased risk of metabolic syndrome
Intrauterine Undernutrition

Adaptation of fetal physiology to increase survival

Continues use of energy saving mechanism in a post-natal environment rich in energy

Increase adiposity and metabolic abnormalities
Micronutrients

- Higher adipose tissue and insulin resistance in children born to South Asian mothers with low B12 and high Folate concentrations

- Large proportion of South Asian women are vegetarians (low B12 intake)
 - B12 deficiency further masked by folic acid supplementation in pregnancy
Low adiponectin levels

- Made by adipose tissue (and placenta in pregnancy)
- Regulates glucose and fat oxidation
- Association with diabetes and metabolic syndrome
Maternal glycemic status

* Prenatal exposure to maternal diabetes associated with higher risk for overweight and obesity

* Increased exposure to glucose, free fatty acids and amino acids results in fetal hyperinsulinemia and larger fat mass
Next steps?

* START South Asian Birth Cohort Study
 * Find early life determinants of adiposity

* Consider early screening and intervention for high risk ethnic groups

* Interventions should also focus on long-term diabetes risk not just in pregnancy
Diabetes and Pregnancy Clinic

(Partnership between Dr. Liutkus and Diabetes Education Program at Cambridge Memorial Hospital)

*N = 83

*Data collected Sep 2012 to Aug 2013
Average age = 31.8
Pre-pregnancy BMI

Postnatal BMI
%

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caucasian</td>
<td>67%</td>
</tr>
<tr>
<td>South Asian</td>
<td>15%</td>
</tr>
<tr>
<td>Asian</td>
<td>6%</td>
</tr>
<tr>
<td>Other</td>
<td>4%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>4%</td>
</tr>
<tr>
<td>African</td>
<td>4%</td>
</tr>
<tr>
<td>Arab</td>
<td>1%</td>
</tr>
</tbody>
</table>
Weeks gestation at 1st visit
Insulin Required

- Yes: 53%
- No: 47%

Number of Insulin Injections

- OD: 48%
- BID: 25%
- TID: 7%
- QID: 21%

Insulin requirement
Total Weight Gain in Pregnancy

- 0-5 kg: 14%
- 6-10 kg: 32%
- 11-15 kg: 29%
- 16-20 kg: 10%
- 21-25 kg: 14%
- >25 kg: 1%
Average weeks = 38.4

Weeks Gestation at Delivery

- 35 weeks: 4%
- 36 weeks: 1%
- 37 weeks: 10%
- 38 weeks: 45%
- 39 weeks: 24%
- 40 weeks: 10%
- 41 weeks: 7%
Induction

- Thrombocytopenia
- Previous Stillbirth
- Twin Gestation
- Poly/oligohydraminos
- Decreasing Insulin... (partial term)
- Over Term
- Gestational Diabetes (GDM)
- Bleeding
- PROM

None stated: 48%
PIH: 14%
Over Term: 8%
Poly/oligohydraminos: 8%
Decreasing Insulin: 4%
GDM: 4%
Bleeding: 4%
PROM: 4%
Twin Gestation: 2%
Previous Stillbirth: 2%
Thrombocytopenia: 2%

Yes: 40%
No: 60%
Delivery Type

- 46% Vaginal
- 54% Cesarian

Reason for C-section

- Planned repeat: 55%
- Failure to progress: 34%
- Other: 11%

Delivery
Neonatal data

Hypoglycemia

- Yes: 13%
- No: 87%

Weight (kg)

- 2.0-2.5: 6%
- 2.6-2.9: 17%
- 3.0-3.5: 43%
- 3.6-3.9: 23%
- >4.0: 11%
Breastfeeding at 3 months postpartum

- 68% Yes
- 32% No
*Diabetes and Pregnancy Clinic Outcome Analysis

Postpartum Glucose Tolerance Screening
* 50% return for postpartum glucose tolerance testing

(CPG 2013, Schaefer 2009, Kwong 2009)

* Women who do not complete postpartum testing tend to:
 * Previous history of GDM
 * Have higher diagnostic glucose levels
 * Required insulin during pregnancy
 * Had more living children

(Hunt et al 2009, Ferrara et 2009, Kwong 2009)

* Barriers to completion of postpartum screening:
 * Discontinuity of care after delivery
 * Underestimating diabetes risk
 * Lack of child care
 * Stress of adapting to caring for a new baby

(Schaefer-Graf 2009, Kwong 2009)
Cohort 1
* Sep 2011 to Aug 2012
* N=78
* Given postpartum OGTT requisition at initial consult
* No postpartum follow-up

Cohort 2
* Sep 2012 to Aug 2013
* N=71
* Given postpartum OGTT requisition at initial consult
* Given 3 month postpartum follow-up visit

Postpartum OGTT
81% completion rate with implementation of a 3 month postpartum follow-up visit
Postpartum Diagnosis
Further data to be analyzed

Comparison of weight gain before and after intervention

Mean weight gain is 79% less after counselling compared to pre counselling.

Covariate analysis to determine any significant associations

No significant association between weight gain and need for insulin
Thank you

